Research Article

Asian Journal of Research in Chemistry and

Pharmaceutical Sciences Journal home page: www.ajrcps.com

DESIGN, ADME PROFILING AND MOLECULAR DOCKING SIMULATION OF NEW ISONIAZID - SCHIFF BASE ANALOGS AS MtKasB INHIBITORS

Salim Meeran^{1,2}, V. Baskar¹, S. Syed Tajudeen³, T. K. Shabeer^{1*}

^{1*}Post Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai, Tamil

Nadu, India.

²Aalim Muhammed Salegh College of Engineering, Chennai, Tamil Nadu, India. ³C. Abdul Hakeem College (Autonomous), Melvisharam, Tamil Nadu, India.

ABSTRACT

A combinatorial library of 99 novel isoniazid Schiff base analogs has been designed virtually from isoniazid (INH) and various aliphatic and aromatic β-ketoesters. Absorption, distribution, metabolism, and excretion (ADME) properties of all the newly designed isoniazid-Schiff base analogs have been evaluated *in-silico* using Swiss ADME tool to predict the key physiochemical, pharmacokinetic, drug-likeness and medicinal chemistry properties. None of the compounds violated Lipinski's rule of five and thus presenting the possible use of the designed libraries for developing compounds with drug-like properties. Among the series, 16 INH-Schiff bases showed zero lead-likeness violation and 35 entries with acceptable one violation and found to have good oral bioavailability. Molecular docking simulations were accomplished for the selected 16 Schiff bases with Beta-ketoacyl Acyl Carrier Protein Synthase II (MtKasB) (PDB code: 2GP6) of *Mycobacterium tuberculosis*. The rule-based method for lead-likeness and the molecular docking studies represents a set of 7 isoniazid - Schiff bases as an optimal choice to initiate lead optimization with enhanced drug like properties. This *in-silico* investigation enlightens on identifying promising new hits as chemotherapeutic inhibitors against *Mycobacterium tuberculosis* with improved efficacy.

KEYWORDS

ADME, Cheminformatics, Drug design, Isoniazid Schiff Base, Molecular docking and Tuberculosis.

Author for Correspondence:

T. K. Shabeer, P.G and Research Department of Chemistry, The New College, Peter's Road, Royapettah, Chennai, India.

Email: tksresearchgroup@gmail.com

Available online: www.uptodateresearchpublication.com

INTRODUCTON

Tuberculosis, also known as 'white plaque'¹, is an infectious disease caused by several species of *mycobacteria*, collectively termed the *tubercle bacilli*². The World Health Organization reported tuberculosis as one of the world's fatal and contagious diseases³. Globally, 9.6 million new cases of TB were reported in 2014 among which 5.4 January – March 20

million men, 3.2 million women and 1.0 million children and 12% were HIV-positive. Worldwide, about 1.5 million deaths, were reported, besides 400,000 deaths due to co-infection with HIV⁴. Two types of fatty acid synthases (FAS) are present in Mycobacteria⁵. The first type, FAS-I performs de novo synthesis of fatty acids⁶, while the second type, FAS-II is essential to convert fatty acyl chains of medium length to precursors of lengthy chain (C(56)) in mycolic acids⁷. The *M. tuberculosis* betaketoacyl acyl carrier protein synthase (ACP) II MtKasB is an enzyme which involves in mycobacterial elongation in FAS-II type. Hence, these enzymes are considered as potential targets in identifying novel anti-tubercular drugs⁸.

Schiff bases are one of the important classes of organic compounds which have many interesting properties and extensive applications in medicinal, agricultural, pharmaceutical fields and material science^{9,10}. The Schiff bases and their complexes are reported for their potent biological activities such as antimicrobial, antibacterial, antifungal, antiinflammatory, anticonvulsant, antitumor, antiproliferative, antioxidant activities¹¹⁻¹⁴ and as potent anti-tubercular agents¹⁵⁻¹⁶. Isonicotinic acid hydrazide (INH) is the cornerstone of treatment for drug-susceptible TB and it is also widely used to treat latent M.Tb infection¹⁷. Indeed, INH has become the single most researched anti tubercular agent potent enough to kill the M. tuberculosis. Schiff base derivatives containing isoniazid moiety have been recently reported to exhibit better antitubercular activity^{18,19}.

The early information regarding physiological, pharmacokinetics and toxicity profile of compounds for lead optimization and drug discovery has been on a great demand²⁰. The early prediction of ADME properties in the drug designing phases considerably diminishes the fraction of pharmacokinetics-related failure in the clinical trials²¹. Our hypothesis is to design a chemical library of Schiff base analogs containing isoniazid moiety in the structure. Isoniazid being a frontier drug in the treatment of incorporation tuberculosis. the of this pharmacophore in the Schiff base skeleton could

Available online: www.uptodateresearchpublication.com

greatly enhance the pharmacological efficiency particularly the anti-mycobacterial activity.

COMPUTATIONAL METHODS

A series of 99 new INH-Schiff bases (Figure No.1) has been virtually designed and subjected to a theoretical *in-silico* ADME prediction study using the web tool, Swiss ADME. Physiochemical, pharmacokinetics, lipophilic, drug-likeness and medicinal properties of all the 99 entries based on various descriptors have been assessed.

A molecular sketcher based on Chem Axon's Marvin JS (http://www.chemaxon. com) was used to draw the 2D structure of the molecules to be analyzed. The 2D structures of the designed chemical library have been converted to canonical SMILES format and used to compute the ADME properties in the Swiss ADME tool.

Molecular Docking Study with MtKasB

Molecular docking studies were carried using the Auto Dock Tools (version 1.5.6) and Auto Dock docking programs (version 4.2.5.1) based on the genetic algorithm (GA) method. The X-ray Crystal Structure of *M. tuberculosis* Beta-ketoacyl Acyl Carrier Protein Synthase II (MtKasB) (PDB code: 2GP6) was downloaded from the protein data bank (http://www.rcsb.org./pdb). The chemdraw structures of the compounds were converted into energy optimized PDB format by Chem 3D 17.0. The receptor (MtKasB) and ligand PDB files were refined using Auto Dock Tools. The protein was bounded in a grid box with dimensions of $110 \times$ 110×110 grid points along x \times y \times z directions with 0.375 Å spacing. AutoDock recorded the results of docking as extension file 'dlg'. Based on the docking scores of each pose, the lowest energy conformer was selected as the best binding mode. Chimera 1.11.2 and PyMOL v0.990 molecular graphics softwares were used to visualize the docking conformations.

RESULTS AND DISCUSSION Physicochemical properties

The physicochemical properties of a drug have a significant impact on the pharmacokinetic and metabolic fate in the body. The results observed January – March 21

from Table No.1 show that the molecular weight of all the compounds lies between 205.2 and 472.3 and thus follow one of the criteria of Lipinski rule of five. The Schiff base compounds 4g, 4f, 7c-7g have more than 10 rotational bonds and rest of the other tested compounds possess less than 10 rotatable bonds and hence satisfies a criterion for oral bioavailability.

The prediction of topological polar surface area (TPSA) parameter helps to understand the passive molecular transport of drug molecules²². It is evident from the Table No.1 that the entire set of the compound library was found to be polar with TPSA values ranging between 71 \AA^2 and 131 \AA^2 . Among the 99 compounds, 6e, 6f, and 6g had the highest TPSA (130.3 $Å^2$), whereas, the compound 8a had the lowest TPSA (71.4 $Å^2$). In drug discovery schemes focusing on oral administration, high solubility will favor complete absorption and the poor solubility limits the absorption of the drug in the gastrointestinal tract²³. Table No.1 suggests that all the 99 tested compounds have good to moderate water solubility, the Log S value being between -1 and -5.6 and thus could facilitate good oral adsorption. It is observed that the compounds with the bulky substituents $-C_6H_5$, $-OCH_3$, $-OC_2H_5$, -OC₆H₅ are 'moderately soluble' and the rest are 'good soluble'.

Pharmacokinetics Properties

Interestingly, all the designed Schiff base molecules were observed with high intestinal absorption as shown in Table No.1 and hence could permeate quite easily across the intestinal lining and available for the cell membrane. Drugs that act in the central nervous system (CNS) need to pass over the bloodbrain barrier (BBB) to reach their molecular target. However, little or no BBB permeation might be required for drug molecules with a peripheral target, so as to avoid central nervous system side effects²⁴. The blood-brain barrier (BBB) permeation expresses the relative affinity of the drug for the blood or brain tissue. It is observed from Table No.1 that all the 99 INH-Schiff bases, without exception were predicted to have no blood-brain barrier penetration and hence, the peril of CNS side effects is expected to be absent. A major role of P-

Available online: www.uptodateresearchpublication.com

glycoprotein (P-gp) is to defend the central nervous system from xenobiotics²⁵. The predicted result elucidates that majority of the INH-Schiff bases are substrates of P-gp and no Schiff base induce phospholipidosis. On the other hand, compounds 3e, 3f, 6a-g and 7e, 7f are non-substrate of P-gp and hence, expected to induce phospholipidosis due to the presence of 2–OH and 2-OCH₃ on the phenyl ring respectively.

The superfamily of cytochromes P450 (CYP) is significant in drug elimination through metabolic biotransformation²⁶. Inhibition of these isoenzymes is certainly a major cause of pharmacokineticsrelated drug-drug interactions²⁷ leading to toxic or other unwanted adverse effects due to the lower clearance and accumulation of the drug or its metabolites²⁸. The results from Table No.1 show that all the INH-Schiff base compounds are found to be non-inhibitors of isoenzyme CYP2D6, except 4g, 7d, and 7g and therefore the side effect (i.e., liver dysfunction) may be absent. However, the -Cl, -OC₆H₅ and 2,4-OCH₃ substituted INH-Schiff bases are predicted to be metabolized by CYP1A2, CYP2C19, CYP2C9, CYP3A4 with a fewer exceptions. Entries 4g and 7g having phenoxy and methoxy substituents respectively are assessed to be inhibitors to all the 5 isoforms of CYP. The more negative the log Kp (with Kp in cm/s), the less skin permeant is the molecule²⁹. The log Kp measurements of all the tested compounds are found to be within the limits (-8.0 to -1.0).

BOILED-Egg model

The Brain Or Intestinal EstimateD permeation method (BOILED-Egg) is an intuitive graphical method to accurately predict the passive human absorption gastrointestinal (HIA) and brain permeability (BBB). This classification model relies on the descriptors: WLOGP and TPSA values, for computing lipophilicity and corresponding polarity of small molecules³⁰. As shown in Figure No.2 and No.3, the egg-shaped classification plot includes the yolk (i.e. the physicochemical space for highly probable brain permeation) and the white (i.e. the physicochemical space for highly probable passive absorption by the gastrointestinal tract). The outside

January – March

grey region stands for molecules with properties implying predicted low absorption and limited brain penetration³¹. From the BOILED –Egg plots (Figure No.2 and No.3), it has been observed that 11 compounds are found to be P-gp substrates indicated by the blue dots and also, all the 99 INH-Schiff bases were spotted in the white yolk attributed to highly probable HIA absorption. This is in accordance with the values obtained from Table No.1.

Lipophilicity and Drug-likeness

The coefficient log P determines the hydrophobic and hydrophilic nature of compounds. The outcome from Table No.2 shows that the log P values of all designed Schiff base libraries were found to be within the limits, i.e. between -0.7 and +5.0 and hence, are predicted to have good permeability and oral absorption. Drug-likeness evaluates qualitatively the probability of a molecule to become an oral drug candidate in regard to bioavailability.

Rule-of-five by Lipinski

As per Lipinski's rule-of-five³², candidate violating none or less than one of the following four criteria is likely to be developed as a prospective oral drug. The criteria are as follows: log P (octanol-water partition coefficient) ≤ 5 , molecular weight ≤ 500 , number of hydrogen bond acceptors ≤ 10 and number of hydrogen bond donors ≤ 5 . In this investigation, none of the INH-Schiff base compounds has violated Lipinski's rule of five (Table No.2) and thus showing the possible utility of series for developing the compound with druglike properties. The Abbot Bioavailability Score³³ (BAS) is a semi-quantitative rule-based score relying on total charge, TPSA, and violation to the Lipinski filter which defines four classes of compounds with probabilities of 11%, 17%, 56% or 85%. All the designed drug molecules are found to have a bioavailability score of 55 and displaying a likelihood of being an oral drug candidate.

Bioavailability Radar

The drug-likeness of a molecule can be rapidly assessed from the Bioavailability Radar (Figure No.4). The pink colored zone is the suitable physiochemical space for oral bioavailability and

Available online: www.uptodateresearchpublication.com

the radar plot of the molecule has to fall entirely in the zone to be considered drug-like³⁴. The pink area represents the optimal range of each property: LIPO (Lipophilicity): -0.7 < XLOGP 3 < +5.0; SIZE: 150 g/mol < MW < 500 g/mol; POLAR (polarity): $20Å^2 < TPSA < 130Å^2$; INSOLU (Insolubility): 0 < Log S (ESOL) < 6; INSATU (Insaturation): 0.25 < Fraction of Csp3 < 1; FLEX (Flexibility): 0 < Num. rotatable bonds < 9. From the Swiss ADME prediction output, it is evident that about 55 percent of compounds have the optimal range of all the six properties, enabling them to be considered to possess proficient chemotherapeutic potentials.

Medicinal Chemistry

PAINS (for pan assay interference compounds or promiscuous compounds) are substances possessing sub-structures which show false response with biologically potent output irrespective of the protein receptor³⁵. Brenk alert is a structural alert which warns about allegedly toxic, metabolically unstable, chemically reactive fragments present in the structure³⁶. The Table No.2 shows that none of the Schiff bases returns any PAINS alert and 1 Brenk alert universally for all the hits except for the compounds with chloro substituent. The synthetic accessibility (SA) score is normalized between 1 (easy synthesis) and 10 (very difficult synthesis). The SA scores for all the candidates in the library were found be less than 4 and hence possess good feasibility to synthesize.

The rule-based method for lead-likeness, aids the medicinal chemist to identify the appropriate initiating lead optimization. molecule for Interestingly, INH-Schiff bases 8c, 8d, 8e, 8h, 8i, 9b, 9h, 9i, 10a, 10b, 10h, 10i, 12a, 12b, 12h and 12i were found to have zero violation for lead-likeness and these molecules (Figure No.5), therefore, are considered to be suitable for initiating lead optimization. Besides, 35 compounds with one violation are also found to satisfy the criteria for oral bioavailability as evident from the radar representations (Figure No.4).

Molecular docking studies with MtKasB receptor

The 16 INH-Schiff bases selected based on the ADME profiling were docked into the active site of the MtKasB. The results of the docking are shown in Table No.3. All the Schiff bases were bound deeply into the active site of the receptor (Figure No.6). The predicted active residues consisted of amino acids such as Tyr 144, Met 145, Gly 116, Gly 114, Gly 406, Asn 147, Ala 118, Ala 169, Leu 115, Val 141, Val 348, Pro146, His 408, Cys 170, Phe 205, Phe 206, Phe 405, Gln 142. The possible key hydrophobic interactions were detected by compounds 8c, 8e, 8h, 8i, 9b, 10a and 10h with active site residues (Gly 406, Met 145, Asn 147, Val 167, Tyr 144, Ser 117, Phe 209, Asn 147, Gly 406, Ala 169 and Gly 114 may play a vital role in interaction profile of the mentioned INH-Schiff bases (Figure No.7).

The residues Phe 209, Ser 110, Tyr 144, Leu 115, Gln 142 make π -interactions with the N- atom of the pyridine ring. The results from Table No.3 indicate that the compounds 8d, 9h, 10a, 10i, 12a, 12b, 12h and 12i have relatively higher binding energy and found to have lesser affinity for binding with targeted protein and consequently would show weak inhibition effect to the organism. The lower the relative binding energy, the more effective is the binding affinity between the ligand molecules and the receptor. The Schiff bases 8c, 8e, 8h, 8i, 9b, 10a and 10h were found to possess relatively lower binding energy values (Table No.4) indicating their higher affinity to the target site.

The protein-ligand interactions of the compounds with the targeting enzymes were established with 2D-representations (Figure No.8) using Ligplot plus programme. The hydrogen bond interaction between the docked compounds and receptor active sites were calculated and displayed in Table No.4. Significantly, compound 8d displays 4 hydrogen bonds with residues Thr 165, Val 167, Glu 175 and Arg 179. The important residues Tyr 144 and Ser 117 were found to involve in 3 hydrogen bonding interactions with compound 8i. The attained results from molecular docking simulations emphasize that the interaction between the INH-Schiff bases and the target protein was conquered by strong hydrogen bonding, hydrophobic forces and π interactions. The docking study thus, propose the following compounds 8c, 8e, 8h, 8i, 9b, 10a and 10h among the 16 virtual hits as the most promising analogs predicted to bind to the MtKasB receptor with stronger binding affinity.

Shabeer T K. et al. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 6(1), 2018, 20-34.

Table No.1: Physiochemical and Pharmacokinetics properties prediction of selected INH –Schiff Bases																	
					Physiochemical Properties						Pharmacokinetics Properties						
S.No	ENTRY	R ¹	R ²	Μ	W #	$\mathbf{RB} \begin{bmatrix} \mathbf{T} \\ \mathbf{C} \end{bmatrix}$	PSA Å ²)	E C	SOL Class	4	GIA	BBB P	Pgp S	CYP ¹	CYP ²	log (cn	(Kp n/s)
1	8c	C_2H_5	Н	26	3.3	7 8	0.65	S	SOL		High	No	No	No	No	-7	.00
2	8d	C ₆ H ₅	Н	31	1.3	7 8	0.65	S	SOL		High	No	No	Yes	No	-6	.75
3	8e	OCH ₃	Н	26	5.3	7 8	9.88	V	.SOI	_	High	No	No	No	No	-7	.68
4	8h	Cl	Н	26	9.7	6 8	0.65	S	SOL		High	No	No	No	No	-7	.19
5	8i	OH	Н	25	1.2	6 1	00.9	V	.SOI	_	High	No	No	No	No	-7	.98
6	9b	CH ₃	CH ₃	26	3.3	7 8	0.65	S	SOL		High	No	No	No	No	-7	.00
7	9h	Cl	CH ₃	28	3.7	7 8	0.65	S	SOL		High	No No	No	No	No	-7	.01
8	9i	OH	CH ₃	26	5.3	7 1	00.9	V	.SOI	_	High	No	No	No	No	-7	.80
9	10a	Н	C ₂ H ₅	26	3.3	7 8	0.65	V	.SOI	_	High	No	No	No	No	-7	.09
10	10b	CH ₃	C ₂ H ₅	27	7.3	7 8	0.65	S	SOL		High	No	No	No	No	-6	.77
11	10h	Cl	C ₂ H ₅	29	7.7	7 8	0.65	S	SOL		High	No	No	No	No	-6	.79
12	10i	OH	C ₂ H ₅	27	9.3	7 1	00.9	V	.SOI	_	High	No	No	No	No	-7	.58
13	12a	Н	t-C4H9	27	7.3	7 8	0.65	S	SOL		High	No No	No	No	No	-7	.05
14	12b	CH ₃	t-C ₄ H ₉) 29	1.4	7 8	0.65	S	SOL		High	No	No	No	No	-6	.73
15	12h	Cl	t-C4H9	31	1.8	7 8	0.65	S	SOL		High	No No	No	No	No	-6	.75
16	12i	OH	$t-C_4H_9$) 29	3.3	7 1	00.9	V.	SOI	[_	High	No No	No	No	No	-7	.54
MW- Molecular Weight, #RB - No. of Rotatable bonds, TPSA – Topographic Polar Surface Area, Cons. Log P- Consensus																	
Log	Log P, ESOL - Water Solubility, SOL-Soluble, M.SOL- Moderately Soluble, V.SOL-Very Soluble, GIA – Gastro Intestinal									inal							
Absor	ption, BBB	P- Blood	l-Brain B	arrier	Permea	bility, Pg	g pS - 1	Perm	ieabi	lity	glvc	oprotein	Substrat	e, CYP1	- CYP2	C9 inhi	bitor.
			~		~		-			, in the second s	0	- F		<i>,</i>			,
			C	YP2 -	CYP2E	06 inhibit	or,	log I	Kp (c	cm/s	<u>) - S</u>	kin pern	neant				,
	Table I	No.2: Di	C' rug liker	YP2 - ness a	CYP2E nd Me	6 inhibit dicinal	or, Chei	log H nist	Кр (с гу р	em/s) - Sl erti	kin pern es of se	neant lected I	NH –Sc	hiff Ba	ses	
	Table I	No.2: Di	C rug liker LIPO	YP2 - ness a PHILI	CYP2E nd Me ICITY	06 inhibit edicinal	cor, Chei	log H nist DR	Kp (d ry p UGI	em/s rop) - Sl erti ENE	kin pern es of se SS	neant lected II ME	NH –Sc DICINA	hiff Bas	ses MISTF	RY
S.No	Table M	No.2: Di	C rug liker LIPO X	YP2 - ness a PHILI W	CYP2E nd Me ICITY M	06 inhibit edicinal Cons.	Cher	log H nist DR o. of	Kp (c ry p UGI Viol	em/s orop LIK latio) - Sl erti ENE ns	kin pern es of se SS	neant lected II ME #a	NH –Sci DICINA ilerts	hiff Bas L CHE	ses MISTR Jead	RY SA
S.No	Table M ENTRY	No.2: Di I Log P	C rug liker LIPO X LogP	YP2 - ness a PHILI W Log P	CYP2E nd Me CITY M LogP	06 inhibit edicinal Cons. Log P	Cher No	log H mist DR b. of G	Kp (c ry p UGI Viol	cm/s prop LIK latio) - Sl pertion ENE ons M	kin perm es of se SS BAS	neant lected II ME #a PAINS	NH –Sc DICINA llerts Brer	hiff Bas L CHE I k lik	ses MISTR Lead eness	RY SA
S.No	Table M ENTRY	No.2: Dr I Log P	C rug liker LIPO X LogP	YP2 - ness a PHIL W Log P 1 4	CYP2E nd Me ICITY M LogP	Cons. Log P	Cher Cher No L	log F nist DR D. of G	Kp (c ry p UGI Viol V	cm/s rop LIK atio) - Sl ertic ENE ns M	kin perm es of se SS BAS	heant lected II ME #a PAINS	NH –Sc DICINA llerts Brer	hiff Bas L CHE I Ik lik	Ses MISTR Lead Leness	SA
S.No	Table M ENTRY 8c 8d	No.2: Di I Log P 1.37 2.8	C rug liker LIPO X LogP 1.27 2.04	YP2 - ness a PHILI W Log P 1.4 2.1	CYP2E nd Me ICITY M LogP 0.68 1.46	Cons. Log P 1.32 2.23	No L 0 0	log H mist DR D. of G 0 0	Kp (c ry p UGI Viol V 0 0	cm/s prop LIK atio E 0) - Sl ertic ENE ms M 0 0	kin perm es of se SS BAS 0.55 0.55	heant lected II ME #a PAINS 0 0	NH –Sc DICINA llerts Brer 1	hiff Ba: L CHE I Ik lik	Ses MISTR Jead eness	SA 3.19 3.34
S.No	Table I ENTRY 8c 8d 8e	No.2: Dr I Log P 1.37 2.8 1.8	C rug liker LIPO X LogP 1.27 2.04 0.33	YP2 - ness a PHIL W Log P 1.4 2.1 0.4	CYP2E nd Me ICITY M LogP 0.68 1.46 -0.4	Cons. Log P 1.32 2.23 0.63	No 0 0 0 0	log H mist DR D. of G 0 0 0 0 0 0 0 0 0	Kp (c ry p UGI Viol V 0 0 0	m/s prop LIK atio E 0 0) - Sl ertic ENE ms M 0 0 0	kin perm es of se SS BAS 0.55 0.55 0.55	heant lected II ME #a PAINS 0 0 0	NH –Sci DICINA ilerts Brer 1 1 1	hiff Ba: L CHE I Ik lik	Ses MISTR Lead eness 0 0 0	SA 3.19 3.34 3.29
S.No	Table I ENTRY 8c 8d 8e 8h	No.2: Dr I Log P 1.37 2.8 1.8 1.92	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41	Cons. Log P 1.32 2.23 0.63 1.2	No Image:	log F mist DR o. of G 0 0 0 0 0	Xp (c ry p UGI Viol 0 0 0 0 0 0 0 0 0 0 0	m/s rop LIK atio E 0 0 0) - Sj ertic ENE ns M 0 0 0 0	kin perm es of se SS BAS 0.55 0.55 0.55 0.55	neant lected II ME #a PAINS 0 0 0 0 0 0 0	NH –Sc DICINA Ilerts Brer 1 1 1 2	hiff Bas <u>L CHE</u> I Ik lik	ses MISTR Lead eness 0 0 0 0 0	SA 3.19 3.34 3.29 3.13
S.No 1 2 3 4 5	Table IENTRY8c8d8e8h8i	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3	CYP2E nd Me ICITY M LogP 0.68 1.46 -0.4 0.41 -0.7	Cons. Log P 1.32 2.23 0.63 1.2 0.18	Cor, Cher No L 0 0 0 0 0 0	log H nist DR O. of G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Kp (c ry p UGI Viol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	m/s rop LIK atio E 0 0 0 0 0) - S ertic ENE ons M 0 0 0 0 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0	NH –Sc DICINA llerts Brer 1 1 1 2 1	hiff Bas L CHE I Ik lik	ses MISTR Lead eness 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07
S.No 1 2 3 4 5 6	Table IENTRY8c8d8d8e8h8i9b	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28	YP2 - 0 ess a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43	No No L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	log H nist DR D. of G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Kp (c ry p UGI Viol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	cm/s rop LIK atio E 0 0 0 0 0 0 0 0 0) - S pertic ENE ms 0 0 0 0 0 0 0 0	kin perm es of se SS BAS 0.55 0.55 0.55 0.55 0.55 0.55	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH –Sc DICINA llerts Brer 1 1 1 2 1 1 1 1 1 1	hiff Bas L CHE I Ik lik	ses MISTR Lead eness 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25
S.No 1 2 3 4 5 6 7	Table IENTRY8c8d8d8e8h8i9b9h	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 1.4 1.4	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45	No Image: No 0	log F mist DR D. of G 0 0 0 0 0 0 0 0 0 0	Kp (c ry p UGI Viol 0	mily mily mily mily mily mily mily mily) - Sl ertic ENE ms M 0 0 0 0 0 0 0 0 0 0 0	kin perm es of se SS BAS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH –Sc DICINA Ilerts Brer 1 1 1 2 1 1 2 1 1 2 2	hiff Bas <u>L CHE</u> I Ik lik	ses MISTR Lead eness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31
S.No 1 2 3 4 5 6 7 8	Table IENTRY8c8d8d8e8h8i9b9h9i	No.2: DI I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29	C rug liker LIPOI X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16	YP2 - 0 ness a PHIL1 W Log P 1.4 2.1 0.4 1 -0.3 1.4 1.4 0.1	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 0.68 -0.4	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 0.45	No Image:	log F mist DR DR O. of G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Kp (c ry p UGI Viol 0	Em/s rop LIK atio E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) - S] ertic ENE ms M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sc DICINA lerts Brer 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	hiff Bas L CHE I Ik lik	ses MISTR Lead eness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26
S.No 1 2 3 4 5 6 7 8 9	Table IENTRY8c8d8d8e8h8i9b9h9i10a	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15	YP2 - 0 ness a PHILI W Log P 1.4 0.4 1 -0.3 1.4 0.1 1.5	CYP2E nd Me ICITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 -0.4 0.68	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37	No Image: No 0	log H mist DR D. of G 0	Kp (c ry p UGI Viol 0	Em/s rop LIK atio E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) - Si ertic ENE M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sc DICINA lerts 1	hiff Bas L CHE I Ik lik	ses MISTF Lead eness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79
S.No 1 2 3 4 5 6 7 8 9 10	Table I ENTRY 8c 8d 8d 8h 8i 9b 9h 9i 10a 10b	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6 2.57	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15 1.72	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 0.1 1.5 1.8	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 -0.4 0.68 0.68 0.95	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37 1.82	Or, Cher No L 0	log H mist DR D. of G 0	Kp (c ry p UGI Viol 0	Em/s prop LIK atio E 0 0 0 0 0 0 0 0 0 0 0 0 0) - S ertia ENE M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sc. DICINA llerts Brer 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hiff Bas <u>L CHE</u> I Ik lik Ik	ses MISTR Lead eness 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79 3.35
S.No 1 2 3 4 5 6 7 8 9 10 11	Table N ENTRY 8c 8d 8d 8h 8i 9b 9h 9i 10a 10b 10h	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6 2.57 2.08	C rug liker LIPOI X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15 1.72 1.87	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 1.4 1.5 1.8 1.8	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 0.68 -0.4 0.68 0.95 0.95	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37 1.82 1.78	Or, Cher No L 0	log H mist DR D. of G O	Kp (c ry p UGI Viol 0	Em/s prop LIK atio E 0 0 0 0 0 0 0 0 0 0 0 0 0) - S ertic ENE M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sc. DICINA lerts Bren 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2	hiff Bas L CHE I Ik lik	ses MISTE Lead eness 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79 3.35 3.41
S.No 1 2 3 4 5 6 7 8 9 10 11 12	Table N ENTRY 8c 8d 8e 8h 8i 9b 9h 9i 10a 10b 10h	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6 2.57 2.08 1.93	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15 1.72 1.87 0.59	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 1.5 1.8 1.8 0.5	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 -0.4 0.68 0.95 0.95 -0.1	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37 1.82 1.78 0.81	No No L 0	log H nist DR D. of G 0	Kp (c ry p UGI Viol 0	Em/s rop LIK atio E 0 0 0 0 0 0 0 0 0 0 0 0 0	B S ertic ENE pns M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sci DICINA lerts Brer 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	hiff Bas L CHE I k lik 	ses MISTE ead eness 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79 3.35 3.41 3.36
S.No 1 2 3 4 5 6 7 8 9 10 11 12 13	Table N ENTRY 8c 8d 8d 8h 8i 9b 9h 9i 10a 10b 10h 10i 12a	No.2: Di I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6 2.57 2.08 1.93 2.22	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15 1.72 1.87 0.59 1.33	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 1.5 1.8 0.5 1.9	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 -0.4 0.68 0.95 0.95 0.95 -0.1 0.95	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37 1.82 1.78 0.81 1.71	Or, Cher No L 0	log H mist DR D. of G 0	Kp (c ry p UGI Viol 0	Em/s prop LIK atio E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) - S ertic ENE DNS M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sc DICINA lerts Brer 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	hiff Bas L CHE I k lik 	ses MISTE Lead eness 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79 3.35 3.41 3.36 2.9
S.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Table N ENTRY 8c 8d 8d 8h 8i 9b 9h 9i 10a 10b 10h 10i 12a 12b	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6 2.57 2.08 1.93 2.22 2.75	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15 1.72 1.87 0.59 1.33 1.9	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 0.1 1.5 1.8 0.5 1.9 2.2	CYP2E nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 0.68 0.68 0.68 0.95 0.95 0.95 -0.1 0.95 1.2	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37 1.82 1.78 0.81 1.71 2.07	Or, Cher No L 0	log H nist DR DR O. of G O	Kp (c ry p UGI Viol 0	Emily cm/s orop LIK atio E 0	B S ertid ENE pms M 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME FAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sc. DICINA lerts Brer 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1	hiff Bas L CHE I k lik 	ses MISTE Lead eness 0 0 0 0 0 0 0 0 0 0 0 0 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79 3.35 3.41 3.36 2.9 3.46
S.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Table N ENTRY 8c 8d 8d 8h 8i 9b 9h 10a 10b 10h 10i 12a 12b 12h	No.2: Dr I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6 2.57 2.08 1.93 2.22 2.75 2.32	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15 1.72 1.87 0.59 1.33 1.9 2.05	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 0.1 1.5 1.8 0.5 1.9 2.2 2.1	CYP2E nd Me ICITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 0.68 -0.4 0.68 0.95 0.95 0.95 -0.1 0.95 1.2 1.2	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37 1.82 1.78 0.81 1.71 2.07 2.04	No No L 0	log H nist DR DR O. of G O	Kp (c ry p UGI Viol 0	cm/s rop LIK atio 0	B S ertic ENF pns M 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sci DICINA lerts Bren 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2	hiff Bas L CHE I k lik 	ses MISTE Lead eness 0	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79 3.35 3.41 3.36 2.9 3.46 3.51
S.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Table N ENTRY 8c 8d 8e 8h 8i 9b 9h 9i 10a 10b 10h 10i 12a 12b 12h	No.2: Di I Log P 1.37 2.8 1.8 1.92 1.55 1.94 1.76 1.29 1.6 2.57 2.08 1.93 2.22 2.75 2.32 2.17	C rug liker LIPO X LogP 1.27 2.04 0.33 1.07 -0.2 1.28 1.44 0.16 1.15 1.72 1.87 0.59 1.33 1.9 2.05 0.78	YP2 - 0 ness a PHILI W Log P 1.4 2.1 0.4 1 -0.3 1.4 1.5 1.8 1.8 0.5 1.9 2.2 2.1 0.9	CYP2I nd Me CITY M LogP 0.68 1.46 -0.4 0.41 -0.7 0.68 0.68 0.68 0.68 0.68 0.95 0.95 0.95 0.95 -0.1 0.95 1.2 1.2 1.2 0.15	Cons. Log P 1.32 2.23 0.63 1.2 0.18 1.43 1.45 0.42 1.37 1.82 1.78 0.81 1.71 2.07 2.04	No Image:	log H nist DR D. of G 0	Kp (c ry p UGI Viol 0	cm/s orop LIK atio E 0	B S ertic ENE ons M 0 0	kin perm es of se SS 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0	neant lected II ME #a PAINS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NH -Sc DICINA lerts Brer 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	hiff Bas L CHE I k lik 	ses MISTE Lead eness 0 <	SA 3.19 3.34 3.29 3.13 3.07 3.25 3.31 3.26 2.79 3.35 3.41 3.36 2.9 3.46 3.51 3.47

BAS-Bioavailability Score, SA-Synthetic Accessibility

Available online: www.uptodateresearchpublication.com

Shabeer T K. et al. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 6(1), 2018, 20-34.

		Final inte en (kcal	ermolecular hergy mol–1)		Final total internal	Torsional free	Unbound system's	Estimated free energy of binding [(1)+(2)+(3)-(4)] (kcal mol ⁻¹)	
S.No	Compound	Vd W + H bond + dissolving energy	Electrostatic energy	Total (1)	Energy (kcal mol ⁻¹) (2)	(kcal mol ⁻¹) (3)	(kcal mol ⁻¹) (4)		
1	8c	-5.15	+0.85	-4.30	-0.73	+1.79	0.00	-3.24	
2	8d	+13.25	+0.91	+14.16	-0.48	+1.79	0.00	+15.47	
3	8e	+0.48	1.90	-0.72	+1.79	+1.79	0.00	-0.83	
4	8h	-2.56	0.51	-2.05	-1.65	+1.49	0.00	-2.22	
5	8i	-2.52	+0.49	-2.04	-1.12	+1.79	0.00	-1.37	
6	9b	-4.17	+0.05	-4.12	-0.23	+1.49	0.00	-2.86	
7	9h	+0.43	-0.09	0.34	1.52	+1.49	0.00	+3.35	
8	9i	-3.27	+0.05	-3.22	-1.10	+1.79	0.00	-2.52	
9	10a	+2.29	+0.06	+2.38	-0.19	+1.79	0.00	+3.98	
10	10b	-3.55	-0.09	-3.65	-0.76	+1.79	0.00	-2.61	
11	10h	-1.78	+0.03	-1.75	-0.43	+1.79	0.00	-0.39	
12	10i	-0.59	+0.08	-0.51	-1.09	+2.09	0.00	+0.49	
13	12a	+4.53	-0.15	+4.38	+2.09	+1.79	0.00	+8.26	
14	12b	+5.32	0.00	+5.32	+7.64	+1.79	0.00	+14.75	
15	12h	+3.83	+0.04	+3.87	+4.13	+1.79	0.00	+9.79	
16	12i	+6.65	-0.07	+6.58	+3.21	+2.09	0.00	+11.88	

 Table No.3: Docking results of the INH-Schiff Bases with MtKasB (PDB ID: 2GP6)

Table No.4: Possible key hydrogen bonds between the INH-Schiff bases and MtKasB target

S.No	Compound	Ligand	Receptor	Bond distance (Å)
1	8c	C ₁₀ -OH	N(Asn147)	2.81
2	8e	C ₁₁ -OH	S (Cys170)	2.91
			N (Thr165)	2.78
2	9h	C4-OH	N (Val167)	3.23
5	011		O (Glu175)	2.75
		C=N	N (Arg179)	2.66
		INH C=O	N (Ser117)	3.14
4	8i	C=N	O (Tyr144)	2.77
		C9-OH	O (Tyr144)	2.88
5	100	N (pyriding ring) Co OH	N (Gln142)	2.97
	10a	iv (pyrianie Inig) C9-OH	S (Cys170)	3.02
6	10h	C ₁₀ -OH	N (Asn147)	2.76

Figure No.2: BOILED-Egg representation of INH-Schiff Bases (1a-7g) Legends: Yellow: BBB, White: HIA, Blue dots: PGP+, Red dots: PGP-

Available online: www.uptodateresearchpublication.com January – March

Available online: www.uptodateresearchpublication.com

January - March

Figure No.6: Molecular docked models of selected INH-Schiff bases 8e (b), 8h (c), 8i (d), 9b (e) and 10h (g) positioned within the hydrophobic packet of MtKasB receptor

Available online: www.uptodateresearchpublication.com January – March

Shabeer T K. et al. /Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 6(1), 2018, 20-34.

Figure No.7: Docking poses of the compounds 8h (a), 8i (b), 9b (c) and 10h (d)Available online: www.uptodateresearchpublication.comJanuary – March

Figure No.8: Two-dimensional representation of H-bonding interactions of the compounds 8c (a), 8e (b), 10a (c) and 10h (d) with the targeting enzymes

CONCLUSION

A series of 99 INH-Schiff base derivatives is designed and subjected to *in-silico* assessment of ADME properties using Swiss ADME tool. The entire sets of compounds are polar with good to moderate water solubility and are therefore expected to have good oral absorption and bioavailability. The predicted gastro-intestinal absorption was displayed high and could assess the absence of toxicity at CNS level, due to non-

Available online: www.uptodateresearchpublication.com

permeation across the blood-brain barrier. All the newly designed molecules were predicted as noninhibitors of isoenzyme CYP2D6 except the compounds 4g, 7d and 7g. A large number of the entries are found to be non-substrate for Pglycoprotein and they are non-inducers of phospholipidosis. The log P values of all designed Schiff base compounds were found to be optimal and hence, are predicted to have good permeability and oral absorption. None of the compounds

January – March

investigated has violated the Lipinski rule of five and the oral bioavailability is found to be universal. Among the series, 16 INH-Schiff bases showed zero lead-likeness violation and 35 entries with acceptable one violation and thus, satisfy the criteria for oral bioavailability. These 16 INH-Schiff bases with zero lead-likeness violation were further studied for molecular docking into the active site of Most of the docked the MtKasB receptor. compounds were found to possess good interaction deep inside the receptor sites and exhibited bonding and non-bonding interactions with the active residues of the receptor. The Schiff bases 8c, 8e, 8h, 8i, 9b, 10a and 10h displayed stronger binding affinity to the MtKasB and could act as a potent inhibitor against the organism. The proposed set of 7 INH-Schiff bases optimized by virtual ADME screening and molecular simulation methods may represent optimal choice of building blocks as better chemotherapeutic agent against Mycobacterium tuberculosis. This study, nevertheless could help the medicinal chemists to spotlight the focus on this space towards the discovery chemical of antimycobacterial drugs with elevated inhibitory potencies.

ACKNOWLEDGEMENT

The authors would like to thank and acknowledge the SIB - Swiss Institute of Bioinformatics (www.sib.swiss) and Chem Axon Ltd. (www.chemaxon.com) for providing computational resources.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

BIBILIOGRAPHY

- 1. Grange J M. In: Schaaf S, Zumla A L, *Saunders*, 2009, 44-59.
- Satoskar R S, Bhandarkar S D and Ainapure S S. Pharmacology and Pharmacotherapeutics, 18th Edition, 2003, 727-744.
- 3. World Health Organization. Global Tuberculosis Report, Geneva, Switzerland: WHO, 2013.

Available online: www.uptodateresearchpublication.com

- 4. World Health Organisation. *Global tuberculosis report*, 20th Edition, 2015, 1-155.
- 5. Kremer, L. Baulard, A. Besra, G S. Molecular Genetics of Mycobacteria. Hatfull, G F, Jacobs, *WR., Jr., editors, ASM; Washington D.C,* 2000, 363.
- 6. Smith S, Witkowski A, Joshi A K. Structural and functional organization of the animal fatty acid synthase, *Prog Lipid Res*, 42(4), 2003, 289-317.
- Lu Y J, Zhang Y M, Rock C O. Product diversity and regulation of type II fatty acid synthases, *Biochem Cell Biol*, 82(1), 2004, 145-55.
- Schaeffer M L, Agnihotri G, Volker C, Kallender H, Brennan PJ, Lonsdale J T. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases Kas A and Kas B, *J Biol Chem*, 276(50), 2001, 47029-47037.
- Marcell D L, Thatyana R A, Erika M D, Maria C S, Solange M S, James L W, Vitor F F, Marcus V N. Synthesis and antitubercular activity of novel schiff bases from D-mannitol. *Carbohydr. Res*, 344(15), 2009, 2042-2047.
- 10. Nabel N A and Mohamed F Z. Structural and biological behaviours of some nonionic Schiff base amphiphiles and their Cu (II) and Fe (III) metal complexes, *Colloid surface-*, *B*, 64(2), 2008, 179-183.
- 11. Pandeya S N, Sriram D, Nath G, Clercq E De. *Arzneimittel Forsch*, Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole, 50(1), 2000, 55-59.
- 12. Singh W M, Dash B C. Synthesis of some new Schiff bases containing thiazole andoxazole nuclei and their fungicidal activity, *Pesticides*, 22(11), 1988, 33-37.
- 13. Kelley J L, Linn J A, Bankston D D, Burchall C J, Soroko F E, Cooper B R. 8-Amino-3-benzyl-1, 2, 4-triazolo [4,3-α]

January – March

pyrazines, Synthesis and anticonvulsant activity, J. Med. Chem, 38(18), 1995, 3676-3679.

- Turan-Zitouni, Kaplancikli Z A, Ozdemir A, Chevallet P. Studies on 1, 2, 4triazolederivatives as potential antiinflammatory agents, *Arch. Pharm. Chem. Life Sci*, 340(11), 2007, 586-590.
- 15. Barbuceanu S F, Ilies D C, Saramet G, Uivarosi V, Draghici C, Radulescu V. Synthesis and Antioxidant Activity Evaluation of New Compounds from Hydrazinecarbothioamide and 1, 2, 4-Triazole Class Containing Diarylsulfone and 2, 4-Difluorophenyl Moieties, *Int. J. Mol. Sci*, 15(6), 2014, 10908-10925.
- 16. Samina Khan Yusufzai *et al.* Design, characterization, *in vitro* antibacterial, antitubercular evaluation and structure– activity relationships of new hydrazinyl thiazolyl coumarin derivatives, *Med Chem Res*, 26(6), 2017, 1139-1148.
- 17. Salve P S, Alegaon, S G, Sriram D. Threecomponent, one-pot synthesis of anthranilamide Schiff bases bearing 4aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors, *Bioorganic and Medicinal Chemistry Letters*, 27(8), 2017, 1859-1866.
- Wengenack N L, Rusnak F. Evidence for isoniazid-dependent free radical generation catalyzed by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG (S315T), *Biochemistry*, 40(30), 2001, 8990-8996.
- 19. Syed Tajudeen, Geetha Kannappan. Schiff Base– Copper (II) Complexes: Synthesis, Spectral Studies and Anti-tubercular and Antimicrobial Activity, *Indian Journal of Advances in Chemical Science*, 4(1), 2016, 40-48.
- 20. Van De Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? *Nat. Rev. Drug Discov*, 2(3), 2003, 192-204.

Available online: www.uptodateresearchpublication.com

- 21. Hay M., Thomas D W, Craighead J L, Economides C and Rosenthal J. Clinical development success rates for investigational drugs, *Nature Biotechnol*, 32(1), 2014, 40-51.
- 22. Ertl P, Rohde B and Selzer P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties, *J. Med. Chem*, 43(20), 2000, 3714-3717.
- 23. Alswaidan, Ibrahim A. *et al.* 2, 4-Ditellurouracil and its 5-fluoro derivative: Theoretical investigations of structural, energetics and ADME parameters, *Computational Biology and Chemistry*, 68, 2017, 56-63.
- 24. Fromm M F. P-glycoprotein: A defense mechanism limiting oral bioavailability and CNS accumulation of drugs, *Int. J. Clin. Pharmacol. Ther*, 38(2), 2000, 69-74.
- 25. Szakacs G, Váradi A, Ozvegy-Laczka C and Sarkadi B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox), *Drug Discov. Today*, 13(9-10), 2008, 379-393.
- 26. Testa B and Kraemer S D. The Biochemistry of Drug Metabolism - An Introduction -Testa - 2007 - Chemistry and Biodiversity -Wiley Online Library, *Chem. Biodivers*, 4(3), 2007, 257-405.
- 27. Hollenberg P F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes, *Drug Metab. Rev*, 34(1-2), 2002, 17-35.
- Kirchmair J. *et al*, Predicting drug metabolism: experiment and/or computation? *Nature Rev. Drug Discov*, 14(6), 2015, 387-404.
- 29. Potts R O and Guy R H. Predicting Skin Permeability, *Pharm. Res*, 9(5), 1992, 663-669.
- 30. Daina A, Zoete V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, *Chem Med Chem*, 11(11), 2016, 1117-1121.

January – March

- 31. Daina A. *et al*, Swiss ADME: a free web tool to evaluate pharmacokinetics, drug likeness and medicinal chemistry friendliness of small molecules, *Sci. Rep*, 7, 2017, 42717.
- 32. Lipinski C A, Lombardo F, Dominy B W, Feeney P J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, *Adv. Drug Delivery Rev*, 46(1-3), 2001, 3-26.
- 33. Martin Y C. A Bioavailability Score, J. *Med. Chem*, 48(9), 2005, 3164-3170.
- 34. Ritchie T J, Ertl P and Lewis R. The graphical representation of ADME-related molecule properties for medicinal chemists, *Drug Discov. Today*, 16(1-2), 2011, 65-72.
- 35. Baell J B and Holloway G A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays, *J. Med. Chem*, 53(7), 2010, 2719-2740.
- 36. Brenk R. *et al.* Lessons learnt from assembling screening libraries for drug discovery for neglected diseases, *Chem Med Chem*, 3(3), 2008, 435-444.

Please cite this article in press as: Shabeer T K *et al.* Design, ADME profiling and molecular docking simulation of new isoniazid - schiff base analogs as MtKasB inhibitors, *Asian Journal of Research in Chemistry and Pharmaceutical Sciences*, 6(1), 2018, 20-34.